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Abstract Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics,
but also critical in determining when and where to take ocean measurements from geostationary orbits such as
the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving
complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using
GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free
hourly observations per day (N) for solar zenith angle 6, < 80° was estimated for each 0.1° location of the
Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day (Nsg) was also calculated
based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and
equatorial oceans showed the lowest N (<2.4) in all climatological months, and highest N was observed in
the Gulf of Mexico (GoM) and Caribbean (>4.5). Different regions showed differences in seasonality of
cloud-free conditions and also showed differences in the hour of a day at which the satellite observations
would have the maximal cloud-free and glint-free probability (T,4,). Cloud cover from Moderate Resolution
Imaging Spectroradiometer (MODIS) 1 km measurements are >10% higher than those from the MODIS
250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial
coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission
planning to maximize its science value through minimizing the impacts of clouds and Sun glint.

1. Introduction

Since the proof-of-concept mission Nimbus-7 Coastal Zone Color Scanner, launched by the U.S. National
Aeronautics and Space Administration (NASA) in 1978, a number of ocean color missions have been
deployed in space by various agencies including NASA, the US. National Oceanic and Atmospheric
Administration (NOAA), and the European Space Agency, among others [McClain, 2009]. The missions include
the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; 1997-2010), the Moderate Resolution Imaging
Spectroradiometer (MODIS; 1999 to present for Terra and 2002 to present for Aqua), the recent Visible
Infrared Imaging Radiometer Suite (VIIRS; 2011 to present), the Medium Resolution Imaging Spectrometer
(MERIS; 2002-2012), and the most recent Sentinel-3 Ocean and Land Colour Instrument (OLCl; 2016 to
present). These Sun-synchronous polar-orbiting satellite instruments offer near-daily observations of the
entire Earth, providing unprecedented information to study the biophysical and biogeochemical properties
and processes of the oceans on both global and regional scales.

However, ocean color measurements from these satellite platforms often suffer from several unfavorable
measurement conditions, including clouds, Sun glint, cloud adjacent effects, or extreme solar/viewing
geometry, leading to a significant reduction in the number of valid observations. Recent estimates by Feng
and Hu [2016b] showed that the mean daily percentage of valid observations (DPVOs) of surface ocean
chlorophyll a (Chl a) concentrations (in mg m™3) from MODIS are generally <20% for most oceans and only
<5% for the global mean when 1 km grids are considered. The DPVOs for the normalized Florescence Line
Height (nFLH; in mw™2cm ™2 pum~"sr~") data products were even lower, as nFLH is more sensitive than Chl
a to Sun glint and other contaminations. A similarly low percentage of high-quality ocean color observations
was also revealed by Maritorena et al. [2010]. This is mostly due to three factors: (1) cloud cover. King et al.
[2013] reported that the global mean cloudiness over the ocean, based on MODIS estimates, is about 72%;
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(2) cloud-adjacent stray light. More than 50% of the cloud-free measurements over the ocean are contami-
nated by cloud adjacency or cloud-adjacent stray light effects, and they are not used for composition of global
level 3 products [Feng and Hu, 2016a; Meister and McClain, 2010; Vdrnai and Marshak, 2014, 2015], although
these effects may eventually be partially corrected [Feng and Hu, 2016a]; (3) Sun-glint contamination over
the tropical and subtropical oceans [Feng and Hu, 2016b]. Due to these nonoptimal observing conditions, for
most oceans, there is at most one valid MODIS observation of Chl a at a given 1km grid cell every 5 days,
and on average, for the global ocean, there is one valid MODIS observation of Chl a at a given 1 km grid cell
every 20 days. When multiple pixels are binned to lower-resolution (e.g., 4 km and 9 km) products, the chances
of obtaining valid ocean color observations at a given grid cell are higher. However, for coastal oceans and
inland waters, subkilometer resolution is often required to observe small-scale features and processes
[e.g., Aurin et al.,, 2013], making such an option infeasible.

The low frequency of valid observations from these Sun-synchronous polar-orbiting satellites poses several
challenges in addressing key science questions for coastal oceans and inland waters, including documenting
diurnal changes in coastal ocean properties, assessing short-term processes, and tracing episodic events. This
is because such research requires global ocean coverage in 2-3 days with a spatial resolution of ~1km, yet
after discounting cloud cover and other perturbations the number of valid retrievals is much lower [Feng
and Hu, 2016b]. In addition, the limited number of valid observations also leads to high uncertainties in data
products temporally binned to estimate monthly “mean” values. For example, Barnes and Hu [2015] showed
that only when both MODIS Aqua (equator overpassing time: ~1:30 P.M.) and SeaWiFS (equator overpassing
time: ~12:00 P.M.) provided >15 valid observations per month in the open Gulf of Mexico (GoM) could their
cross-sensor difference in the monthly mean products reach <10% for a given location.

Clearly, more frequent ocean color observations are required. Although this may be partially achieved
through multisensor data merging [e.g., Maritorena et al., 2010], the ultimate solution is through geostation-
ary satellite observations. As such, the decadal survey of the National Research Council recommended the
formulation of a geostationary satellite mission to observe coastal ocean and air quality [NRC, 2007]. In
response to this recommendation, NASA has been developing the next-generation ocean color mission,
namely, the Geostationary Coastal and Air Pollution Events (GEO-CAPE) [Fishman et al., 2012], with mission
specifications and planning defined in the past few years. NASA has supported GEO-CAPE preformulation
activities from 2008 to the present that encompass engineering studies and scientific research relevant for
mission risk reduction. Atmospheric and ocean science working groups (SWGs) were established to define
the high-priority mission science questions and associate them with specific measurement and instrument
requirements [Fishman et al., 2012]. Engineering studies have demonstrated the technological readiness and
refined the costs of the mission concept and notional satellite instruments. The science studies have
constrained and justified the measurement and instrument requirements such as spatial and temporal
resolutions. All these activities have been summarized in a detailed whitepaper available online (http://
geo-cape.larc.nasa.gov/pdf/GEO-CAPE_2009-2015_SummativeWhitePaper.pdf). GEO-CAPE and four other
missions were originally envisioned with notional launch dates of 2013-2016 (“Tier 2"). Due to budget and
other constraints, none of the Tier 2 missions have yet advanced to mission formulation with established
launch dates.

A geostationary sensor could obtain multiple observations per day at any given location within its field of
view (FOV). With 8-hourly measurements per day, the proof-of-concept Geostationary Ocean Color Imager
(2010 to present) has already demonstrated the increased value of high temporal observations over the
low-Earth orbiting sensors in capturing short-term changes of water turbidity, red tides, floating algae, etc.,
over coastal waters around South Korea, East China Sea, and the Yellow Sea [Choi et al., 2012; He et al.,
2013; Lou and Hu, 2014; Son et al., 2012]. However, to maximize the capacity of GEO-CAPE in addressing
the various science needs [Fishman et al., 2012], one practical consideration is when and where to take mea-
surements. This is because in practice, and particularly for the high-resolution (250 to 375 m) GEO-CAPE
ocean color mission, it is impossible to measure all targets within the satellite’s potential FOV on an hourly
basis due to sensor technical and cost limitations, leading to competing demands to measure different
regions [Fishman et al., 2012]. In contrast to geostationary weather satellites (such as the instruments aboard
the current series of Geostationary Operational Environmental Satellite (GOES) system), which can scan most
of the Earth disk 2 or more times per hour, sensor concepts capable of meeting or exceeding the minimum
GEO-CAPE ocean color accuracy requirements have much lower scan rates (area per unit time), ranging from
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~25,000 to over 100,000 km? min~". This scan rate places an upper limit on the area that can be imaged and
at a given temporal frequency. The GEO-CAPE SWG recommended a minimum daytime target mode
acquisition frequency of hourly observations (30 min goal) for imaging hazards or other critical events and
a 2h frequency (1 h goal) for survey mode scans of U.S. continental coastal and inland waters. The discre-
pancy in observation frequency between weather and ocean color sensors is due primarily to two factors
(ignoring instrument design differences), the signal-to-noise ratio and spatial resolution, both of which are
higher for ocean color sensors. If a GEO-CAPE sensor can bypass scanning heavily clouded scenes based
on a priori knowledge of cloud cover at the time of sensor scanning and historical cloud cover statistics, it
allows for optimization of the available scan time to concentrate on likely cloud-free or partially cloudy
scenes. This capability affords a significant measure of efficiency and increases the frequency and area that
can be scanned within a given day. Recent and ongoing work involves evaluation of the feasibility of using
intelligent cloud avoidance strategies with notional instrument concepts to explore various scenarios incor-
porating actual cloud forecast data for specific targets.

Thus, it is desirable to determine the optimal observation time window for a given region, essentially identify-
ing the best season (or month) and best observation time during the day to acquire observations for a certain
region. While this can also be driven by a particular science question (e.g., Karenia brevis blooms on the west
Florida shelf typically occur from summer to fall), knowledge of the optimal measurement conditions, such
as probability of cloud cover and Sun glint, can help implement an optimal measurement plan.

Although cloud cover has been estimated from MODIS cloud mask products [Ackerman et al., 2008; King et al.,
2013], such statistics are based primarily on daily snapshot measurements around solar noon (except for the
polar regions) and are thus not sufficient to provide statistics for the entire day, as required for geostationary
satellites. GOES, on the other hand, has provided the most frequent cloud observations over the continental
United States, the Pacific and Atlantic Oceans, Central and South America, and southern Canada [Lombardi
and Hanson, 2005] since 1974. As such, the cloud masks provided by GOES are the most suitable data to
determine the cloud-free time window for the planed FOV of GEO-CAPE. The goal of this study is therefore
to demonstrate how geostationary missions such as GEO-CAPE with their capability to collect data at any
time during the day can provide greater ocean color coverage than Sun-synchronous ocean color sensors
(SeaWiFS, MODIS, MERIS, VIIRS, OLCI, and the future PACE (Plankton, Aerosols, Clouds, ocean Ecosystems)
mission), with the following specific objectives:

1. apply GOES observations to determine diurnal to seasonal variability in cloud cover to demonstrate how
geostationary orbit could improve clear-sky coverage of ocean color observations compared to Sun-
synchronous low-Earth orbit,

2. determine how Sun glint constrains diurnal observations of ocean color from geostationary orbit,

3. evaluate to what extent higher satellite sensor spatial resolution affects the extent of cloud-free areas by
comparing cloud cover statistics derived from measurements obtained at different spatial resolutions, and

4. discuss the implications of cloud and glint distributions for future GEO ocean mission planning such as
GEO-CAPE.

Note that although the focus of this study is for ocean measurements, the cloud statistics over land are also
estimated and presented for reference purposes.

2. Data Sources

Three data sets are used in this study to estimate cloud-free probability (or cloud statistics) for the study
region: (1) GOES cloud masks between 2006 and 2011 at 4 km nadir resolution but resampled to 0.1°% (2)
concurrent cloud fraction products from MODIS Aqua (MYDO08) for daytime observations at 1°, derived from
measurements at 1 km nadir resolution; and (3) MODIS cloud masks from the MOD35 (Terra) and MYD35
(Aqua) data products at 1 km and 250 m nadir resolutions in the years of 2005, 2008, 2011, and 2014.

2.1. GOES Data

The GOES observations provide five spectral channels with central wavelengths of approximately 0.65, 3.9,
6.7, 11.0, and 13.3 um. The nadir spatial resolution of the data used here is 4 km, where 1 km visible bands
were resampled into 4 km to match the spatial resolution of the infrared bands. However, the data analyzed
in this study were resampled to a 0.1° resolution as described in Heidinger et al. [2014]. The GOES sensors
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generate data over multiple domains with differing temporal resolutions. This study uses the Northern
Hemisphere extended domains observed at 15 min after the start of each hour from the GOES 12 and
GOES 13 satellites, which were located at 75°W. Note that the GOES 13 satellite replaced GOES 12 satellite
on 14 April 2010, while the two satellites share very similar cloud detection capability (http://www.nasa.
gov/mission_pages/goes-n/media/goes-east.html). The GOES data were processed through the
NOAA/National Environmental Satellite, Data, and Information Service Clouds from Advanced Very High
Resolution Radiometer Extended (CLAVR-x) processing system, which utilizes the community-accepted
NOAA Enterprise Cloud Algorithms (ECAs) [Heidinger et al., 2012]. As the name implies, these algorithms
are applied to all of the sensors supported by NOAA, including GOES.

The NOAA ECA is described in Heidinger et al. [2012]. It uses a naive Bayesian formulation to combine the
results of multiple spectral and spatial cloud detection classifiers into a single value of the probability that
a pixel is cloudy. The cloud detection scheme also generates a four-tier probability cloud mask with the
values of 0= confidently clear, 1 =probably clear, 2 = probably cloudy, and 3 = confidently cloudy. The four-
level mask is derived solely from the cloud probability values, with the cloud probability value that separates
confidently and probably clear being 0.1. One of the advantages of this technique is that the most suitable
threshold can be selected according to the needs of any specific applications. We used the value of 0 (e.g.,
confidently clear) to conduct the cloud-free statistics in this study.

In addition to the cloud mask, this study also used the solar geometry information from CLAVR-x. CLAVR-x
also includes the surface wind speed and direction in its output, which is obtained from the Climate
Forecast System Reanalysis (CFSR) data. CFSR data have a resolution of 0.5° and temporal resolution of 6 h.
A linear interpolation in space and time was used to generate the CFSR data for each GOES pixel. The solar
geometry and wind speed were used to estimate the corresponding Sun-glint reflectance for the planned
GEO-CAPE viewing geometry.

2.2. MODIS Data

To evaluate the impact of pixel resolution on cloud statistics, level-3 1° x 1° daytime cloud fraction products
were obtained from the Geospatial Interactive Online Visualization And aNalysis Infrastructure of the
Goddard Earth Sciences Data and Information Services Center [Acker and Leptoukh, 2007]. Cloud fraction
was first derived from the MODIS/Aqua cloud mask products (MYD35) at 1 km nadir resolution [Ackerman
et al., 1998], which is defined as the number of cloudy pixels divided by the total number of measured pixels
in each gridded cell [Platnick et al., 2003], and the level 3 monthly cloud fraction (Cy) data were mapped to a 1°
x 1° grid on an equal-angle projection.

In order to derive 250 m and 1 km resolution cloud fractions, MODIS level 1B data were locally processed
using the official MOD35 cloud mask algorithm, where a series of individual spectral tests were employed
to determine a final four-category confidence of clear sky for a given field of view (FOV) [Ackerman et al.,
1998]. In practice, the collection 6 NASA MODIS MODI35 cloud mask baseline software was ported from
the operational MODIS atmosphere group-processing environment for stand-alone execution as part of
the International MODIS/AIR Processing Package (IMAPP) [Huang et al., 2004]. Designed for MODIS global
direct broadcast users, it can be used to process any standard MODIS L1B-calibrated, geolocated data set
on standard Linux operating systems.

Throughout this manuscript, the terms cloud amount, cloud cover, cloud frequency, etc., are used to describe
the quantity retrieved from the GOES and MODIS measurements and the corresponding algorithms. These
terms are shorthand for occurrence frequency of cloud-contaminated pixels. In other words, cloud
masking/detection algorithms do not provide a measure of cloud amount in a pixel but rather provide an
indication of the likelihood of a pixel’s instantaneous FOV being obstructed by a cloud element.

3. Methods
3.1. Cloud Statistics

The number of discrete cloud-free hourly observations in a day (N) is one of the most important parameters
of this study, which was estimated as the summation of the number of cloud-free GOES observations during a
day when solar angle 6, was <80°. Data with 6, > 80° were excluded because the ocean color signal for such
targets would be too small and overwhelmed by sky Fresnel reflectance [Gordon, 1997; Kirk, 1994]. The
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Figure 1. Map of the GOES observation area (rather than GEO-CAPE) used in this study. The color shows the mean number
of cloud-free hourly observations during a day (N¢g) for Sun elevation > 10° (i.e., solar zenith angle 6, < 80°), based on GOES
cloud cover data (4 km resolution but resampled to 0.1°) between 2006 and 2011 and Sun angle calculation for each
location. The oceans and lakes are partitioned into subregions (white and grey lines) to facilitate calculation of regional
statistics. The locations of GOES (75°W over the equator) and GEO-CAPE satellite (94°W as currently being planned) are
annotated.

integrated daily cloud-free probability (P.f) was also estimated and was used to assess the potential capability
of the geostationary satellite in obtaining at least one cloud-free observation in any given day. If there was at
least one cloud-free observation in a day, the P is set as 100%. Then, the monthly mean N (or P) was
calculated as the integration of N (or P¢f) in that month normalized by the number of days. Note that in this
analysis, whether an observation was over clouds was determined purely from the cloud detection
algorithms for GOES and MODIS, where absorption by aerosols and gases were not considered.

3.2. Sun-Glint Statistics

The Sun-glint strength, defined as the normalized Sun-glint reflectance, or Ly, (in sr '), was estimated as a
function of wind speed (to estimate the surface roughness) and solar/viewing geometry [Cox and Munk,
1954; Wang and Bailey, 2001; Zhang and Wang, 2010]. For each GOES hourly observation, Ly, was estimated
using the time of the observation, windspeed of the observation (obtained from the CFSR), and the planned
observational geometry of GEO-CAPE. The proposed orbital location (for GEO-CAPE 94°W; annotated in
Figure 1) was used to calculate the view zenith and azimuth angles for each target, and the GOES observation
time was used to estimate the solar zenith and azimuth angles [Richharia, 2014]. Following the same conven-
tion that is used as the NASA standard quality control flag in composing global chlorophyll a data products,
“high-glint” observations with Ly, >0.005 st~ " were considered as Sun-glint-affected data [Wang and Bailey,
20011. Similar to calculating cloud statistics, the number of Sun-glint-affected hourly observations within a
day (Nsg) and the monthly mean N,y were estimated. With the cloud and Sun-glint coverage, cloud-free
and glint-free pixels can be identified for each hourly geostationary satellite image, and the numbers of
cloud-free and glint-free observations in a day (or Ng) were calculated, as were the corresponding monthly
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data. Note that although wind conditions from cloud fields may have a secondary effect on Sun-glint calcula-
tions, such an effect was not considered in this study.

With the hourly cloud-free and glint-free observations between 2006 and 2011, the time of a day (or
Greenwich Mean Time (GMT) hour, specifically) that has the maximal cloud-free and glint-free probability
(or Tmax) for a location can be determined. As T,,,x may change with season due to the variability of cloud
cover and Sun glint, T, was obtained for each climatological month (2006-2011). Additionally, the mode
of the histogram of the optimal hour (for cloud-free probability) from all pixels within the predefined regions
was estimated for each climatological month, representing the mean condition for that region.

3.3. Comparison Between Cloud Statistics for Different Spatial Resolutions

There are two comparisons in the study. The first compares GOES 4 km cloud statistics with MODIS 1 km cloud
statistics, and the second compares MODIS 1 km cloud statistics with MODIS 250 m cloud statistics.

For each 1° region of the level 3 MODIS monthly cloud fraction data, the noncloud fraction was calculated as
1 — Gy, which can also be interpreted as noncloud probability. The GOES cloud mask data closest in time dur-
ing each day to the MODIS/Aqua observation (e.g., 13:15 local time) were used to generate similar monthly
noncloud fraction products as MODIS/Aqua following the methods of Platnick et al. [2003].

Daily MODIS (Aqua and Terra) passes covering the GoM region (18-31°N, 98-79°W) collected during the years
2005, 2008, 2011, and 2014 were downloaded at level 1A from the NASA Ocean Biology Processing Group
archives (http://oceancolor.gsfc.nasa.gov). These data were processed to level 1B using SeaDAS (version
7.2) with default processing parameters. L1B data were subsequently processed using IMAPP (version 3.1;
corresponding to collection 6 [Huang et al., 2004]) and mapped to an equidistant cylindrical projection (with
the GoM geographical bounds specified above) at 1 km spatial resolution. From this, the 1 km MOD35 cloud
mask was created as pixels where the MOD35 algorithm ran without failure (bit 0), classified the target as
water (value 0 in bits 6-7), and identified the target as “probably cloudy” or “confident cloudy” (values 0
and 1 in bits 1-2). The projected MOD35 data were also used to create 250 m (QKM) cloud masks, using
quality-assurance bits 25-40 (to identify algorithm failure) and cloud mask bits 32-47 (for determination of
cloud presence/absence). Monthly (and yearly) cloud cover over water for the 1 km and QKM cloud masks
was determined as the total number of cloudy pixels divided by the total number of observed pixels. This latter
classification was determined at 1 km spatial resolution and multiplied by 16 to calculate the denominator for
QKM cloud cover percentages.

4, Results
4.1. Cloud and Sun-Glint Statistics From GOES Measurements and GEO-CAPE Geometry

The number of cloud-free hourly observations in a day (N) during the period of 2006-2011 is shown as the
base map in Figure 1. For the entire study area, the eastern Caribbean and southern GoM show the highest
Nt with 5-7 cloud-free hourly observations during an average day for Sun elevation >10°. Certain ocean
regions also show relatively high daytime cloud-free periods (yellowish in Figure 1), such as the California
upwelling region off the southwest coast of the North America, as well as the western Atlantic. In contrast,
the higher-latitude regions (>35°N for the open ocean and >40°N for land and ocean) are more influenced
by clouds, where the mean N values are generally <3. In addition, low N values are also observed in the
equatorial eastern Pacific Ocean.

The monthly climatological N distributions are shown in Figure 2, where significant intraannual variability is
revealed across the panels. For example, while a large area of the southwest coast of North America shows
high Nt from November to April, warmer months from May to October tend to have more cloud coverage.
In contrast, a higher cloud-free probability occurs in late spring and summer months in the GoM than in
the other seasons. Similar seasonality is also observed for the western Atlantic Ocean. On the other hand,
clouds are frequently present in the equatorial regions through most of the year, except for certain months
over ocean waters close the Amazon delta.

Statistics of N for the predefined regions are presented in Table 1. The two regions at relatively high
latitudes (eastern coast of the North America and the Great Lakes) show the lowest N among these areas,
with mean hourly cloud-free observations of <2.4 and even <1 for some winter months. The GoM and
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Figure 2. Mean number of cloud-free hourly observations per day (N for each climatological month (2006-2011) for solar angle 6, < 80°. Statistics for the prede-
fined subregions are presented in Table 1.

Caribbean oceans show the higher cloud-free probability, with an annual mean N of >4.5 for the two
regions. The cloud-free probability is even higher for the West Florida Shelf (WFS) of the GoM. Additionally,
while the cloud coverage is relatively stable throughout the year in the Caribbean, in the GoM more cloud-
free opportunities occur in warm months (N >6 and even >7 in WFS in May) than in cold months (<3 in
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Table 1. Mean Number of Cloud-Free Hourly Observations Within a Day (6, < 80°) for Each Climatological Month Between 2006 and 1010, Based on GOES
Observations at 4 km Resolution®

E_Atlantic Amazon Caribbean E_N_America G_Lakes SW_N_America CA_Upwelling GoM WEFS
Jan 2.8 (0.3) 2.7 (0.6) 5.3 (0.6) 0.8 (0.1) 0.3 (0.1) 5.4 (0.4) 6.7 (0.4) 3(0.6) 3.6 (0.7)
Feb 2.6 (0.8) 2 (0.8) 5(1.7) 0.9 (0.4) 0.6 (0.3) 52(2.2) 6.3 (2.4) 3.2(1.7) 3.8(1.9)
Mar 26 (1.2) 23(1.2) 49 (2.3) 1.7 (0.8) 1.8 (0.9) 5.4 (2.6) 6.5 (3) 4.1 (1.9) 48 (2.3)
Apr 3.1(1.4) 1.8 (1) 48 (2.3) 2.5 (1.1) 23 (1.1) 44 (2.1) 5.6 (2.6) 5(24) 5.8 (2.7)
May 3.9(0.3) 2.6 (0.5) 4.8 (0.4) 3.4 (0.5) 3.3(0.8) 3.2(04) 46 (0.4) 6.9 (0.8) 7.5 (0.8)
Jun 44 (0.3) 3.8(0.7) 4.4 (0.6) 3.7 (0.5) 4.2 (0.8) 2.5(0.3) 3.7 (0.4) 6.7 (0.6) 6.7 (0.7)
Jul 5.5(0.3) 5.3 (0.6) 4.6 (0.9) 3.7 (0.3) 5.2(0.7) 1.9 (0.5) 2.8(0.7) 5.5(0.7) 5.1 (0.5)
Aug 49 (0.7) 5.7 (0.9) 4.7 (0.9) 3.7 (0.8) 5.2 (0.9) 1.8 (0.5) 2.6 (0.7) 5.4 (0.2) 49 (1)
Sep 39(1.4) 58(2) 4.1 (1.5) 2.9 (0.9) 3.1 (1.3) 1.9 (0.9) 25 (1.2) 42(1.7) 44(1.8)
Oct 2.8 (1.4) 49 (2.5) 3.2(1.8) 2(1) 14 (1.1) 25(01.4) 35(2) 4(2.2) 45 (2.5)
Nov 2.9(0.2) 4.7 (0.4) 4.1 (0.8) 1.4(0.2) 0.8 (0.3) 44 (04) 6.2 (0.5) 4.2(0.9) 49 (1.1)
Dec 2.2 (1.1) 3(1.7) 4(2.1) 0.7 (0.4) 0.3 (0.2) 4.2 (2.1) 5.6 (2.8) 25 (1.4) 29(1.8)
Mean 3.5(0.8) 3.7 (1.1) 45 (1.3) 2.3 (0.6) 24 (0.7) 3.6 (1.1) 4.7 (1.4) 46 (1.3) 49 (1.5)

#Numbers in the parentheses are standard deviations. Spatial distributions are presented in Figure 2.

December). Similar seasonal patterns are also found in the eastern Atlantic and the Amazon plume areas,
where N is >5 in boreal summer but drops to ~2 in winter. In contrast, while N is >5 during boreal winter
months along the southwest coast of North America, N+ decreases to <2 in warmer months. The California
upwelling region shares seasonal patterns similar to the southwest coast of North America but with higher
probability of cloud-free conditions (N ~4-6 in autumn-winter-spring and ~2-3 in warmer months).

A 6 year mean daily cloud-free probability, P, for each climatological month between 2006 and 2011 was
calculated and is shown in Figure 3, with numeric values (including standard derivations) for the predefined
regions shown in Table 2. The values can be interpreted as the probability of obtaining at least one cloud-free
observation during a day in that month for solar angle 6, < 80°. Other than some high-latitude regions and
the equatorial oceans, most of the study regions have a probability of >50% in obtaining daily cloud-free
images with hourly observational frequency in any climatological month. While the mean P for the eastern
coast of North America (particularly in the northeast) and the Great Lakes is <50% on average and even
<25% for certain months, mean P is >62.5% for other predefined regions. Additionally, seasonal variability
is also found in most regions, where the spatial patterns are generally the same as in the climatological N.

The mean daily number of hourly observations affected by Sun glint, Ny, during each climatological month
of 2006-2011 was estimated and is illustrated in Figure 4, while the statistics for different regions are tabu-
lated in Table 3. Significant spatial and temporal gradients are observed. As expected, boreal summer months
are more likely to be influenced by Sun glint than winter months. Between April and September, a large por-
tion of the study region shows Ngg of 3-4 (green color in Figure 4), especially for the northeastern coast of
South America (including the Caribbean Sea) and the equatorial oceans. In contrast, the Sun-glint-affected
areas are restricted only to the equatorial oceans from October to February. Statically, the oceans close to
the Amazon delta show the highest probability of Sun-glint presence, with a 12 month mean climatological
Nsq of 2, suggesting that two daytime hourly observations would be contaminated by Sun glint in this region
in an average day. Other areas affected by Sun glint include the eastern Atlantic Ocean, Caribbean Sea, south-
western coast of the North America, and the GoM, with mean N, reaching to 1 (or close to 1). However, the
California upwelling region and WFS show limited influence with mean Ng4 of 0.2 and 0.1, respectively. The
two high-latitude regions (eastern coast of the North America and the Great Lakes) are not affected by Sun
glint due to their relatively low solar angles and large viewing angles.

Daily cloud-free and glint-free hourly observations (N.g) during each climatological month of 2006-2011
were estimated and presented in Figure 5. The values are similar to the N in Figure 3, especially for high-
latitude regions. Major difference is found in the equatorial regions from the northwest to South America.
In these regions, N is generally >4 but N4 is <4 due to severe Sun glint. Differences are also observed in
the Amazon outflow region, Caribbean Sea, and GoM, especially during some boreal summer months.

The GMT hour at which the satellite observations would have the maximal cloud-free and glint-free probabil-
ity (Tmax) is color coded in Figure 6, where each panel represents a climatological month. Significant
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Figure 3. Mean-integrated daily cloud-free probability (P.f within a day for each climatological month (2006-2011) for solar angle 6, < 80°. A value of 70% means

that for a given day there is a 70% chance of getting at least one cloud-free observation from all hourly observations. Statistics for the predefined subregions are
presented in Table 2.
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Table 2. Mean-Integrated Daily Cloud-Free Probability (%) Within a Day in Each Climatological Month (2006-2010) for Solar Angle 6, < 80°°

E_Atlantic Amazon Caribbean E_N_America G_Lakes SW_N_America CA_Upwelling GoM WFS
Jan 60.5 (4.4) 59.1 (9.1) 89 (4.5) 24.5 (3.6) 13.7 (3.1) 82.1 (3.1) 90 (3.7) 62.1 (10.3) 69.1 (8.7)
Feb 544 (17.2) 443 (17.1) 79.6 (27) 24.8 (10) 20.1(7.9) 75.1 (25.6) 80.5 (27.1) 60.5 (27.9) 64.3 (27.4)
Mar 53.1(24.7) 45,6 (23.3) 75.4 (35.4) 36.5(16.5) 40.6 (19.4) 75.9 (29.8) 81.9 (31.5) 66.6 (31.5) 69.9 (33.1)
Apr 57 (26.4) 40.4 (19.8) 71.3 (33.6) 45.4 (20.8) 459 (21.6) 67.8 (25.8) 77.9 (27.5) 72.3 (34.4) 74.3 (34.9)
May 68.1 (3) 55.2(7) 75 (4.1) 59.1 (4.5) 59.9 (6.9) 58.6 (4.2) 717 (3.2) 89 (4.9) 89.8 (5.1)
Jun 71.7 (2.7) 69.1 (7) 70 (5.9) 63.3 (5.5) 70.8 (6.6) 51.2(5.4) 62.5 (5.8) 854 (5) 86 (3)
Jul 81.5 (2.7) 83.3 (4) 73.1 (8.8) 65.8 (3.3) 80.8 (5.2) 44.4 (8.4) 57 (10) 79.5 (4.6) 79.1 (4.8)
Aug 74.7 (10.6) 82.7 (11.2) 719 (11.7) 64.7 (11.1) 77.6 (11.3) 41.7 (8.6) 53.5 (9.6) 80.1 (8.3) 76.1 (12.4)
Sep 64.4 (22.7) 78.9 (27.8) 65.5 (23.1) 55.5(17.9) 55.8 (19.6) 413 (16.3) 50 (19.9) 67.2 (26.5) 69.9 (28.2)
Oct 54.5 (26.9) 71.8 (35.3) 56.9 (29) 43.1 (21.7) 34 (20.7) 45.8 (23.3) 55 (28.7) 66.5 (33.4) 68.5 (34.5)
Nov 61.2 (3.5) 80 (3.3) 73.2(7.7) 379 (4.2) 24.8 (6.7) 71.9 (4.1) 87.6 (4.9) 76.9 (10.9) 81.7 (10)
Dec 494 (24.2) 57.9 (29.6) 70.3 (35.1) 21.1(11.4) 10.9 (6.1) 65.5(32.2) 758 (37.2) 52.7 (28.1) 56.1 (30.8)
Mean 62.5 (10.5) 64 (10.9) 72.6 (12.8) 45.1 (6.9) 446 (7) 60.1 (11.1) 70.3 (12.5) 71.6 (12.3) 73.8 (13)

@A value of 70% means that on average, for a given day in that month, there is 70% probability to have at least one cloud-free measurement from all hourly
measurements. Numbers in the parentheses are standard deviations. Spatial distributions are presented in Figure 3.

variability is found in different locations and seasons. The most prominent seasonality occurs in the Caribbean,
where the Tax ranges between 13 August-November and 20 February-June. Other noticeable seasonality
occurs in regions including the eastern coast of North America (Tphax=14-22), the southwestern coast of
North America (Tax = 15-20), and the GOM (T ,ax = 15-20). Trnax for the California upwelling region is higher
(i.e, later in the day) than that of the southwestern coast of North America, ranging from 19 November to
22 May-August. T« for the WFS is also different from other parts of the GoM, with less apparent seasonality.
The western Atlantic Ocean has a mean Ty,ax Of 13—-14 for most of the year (Table 4), while T,,,ox for alarge portion
of this region is 1-2 h higher in boreal summer months than in other months. Relatively stable conditions are
also found for the Great Lakes (T,,ax = 17-20) and the ocean region close to Amazon delta (T,ax = 14-15).

4.2. Cloud Statistics of Different Resolutions

Spatial resolution of satellite measurements can affect the cloud cover estimates, as can be imagined by
taking the following extreme case for example: if the entire global ocean is treated as one pixel then this pixel
is always a cloudy pixel because 70% of the global ocean is cloudy [King et al., 2013]. Thus, finer-resolution
measurements would lead to less cloud cover. Here the resolution-induced uncertainties in cloud statistics
are evaluated through comparison between concurrent GOES and MODIS 1 km cloud statistics and between
MODIS 1 km and 250 m (QKM) cloud statistics.

First, monthly cloud-free probabilities estimated from GOES and MODIS/Aqua are compared. MODIS data are
collected at 13:30 local time over the equator, while the corresponding GOES data are collected at 13:15 local
time. The spatial distributions of P from these two measurements for two typical months are shown in
Figure 7. The GOES-derived cloud-free probabilities appear very similar to those of MODIS/Aqua, especially
for the low-latitude regions. For example, high P values are observed over the GoM and western portions
of the Atlantic and the western areas of North America from both measurements in June. Meanwhile high
cloud coverage is shown through almost the entire Pacific region west of Central America. In contrast, in
December both measurements show very high cloud-free probability in the southwest coast of the North
America. The agreement between these two sets of independent observations is further proven in the
scatterplots in Figure 8 for ocean observations only, where the relationships between the two are statistically
significant and most data points are generally aligned around the 1:1 line, with median ratios between the
two observations (GOES versus Aqua) being 1.05 and 1.03 for June and December, respectively. Other
months show similarly consistent cloud coverage between GOES and MODIS/Aqua observations. However,
differences in P.scan also be observed between MODIS and GOES observations. There may be several reasons
explaining the differences. First, the spatial resolution of GOES is lower than MODIS, especially for high-
latitude regions as GOES pixel size systematically increases with viewing angle (see GOES pixel size contours
in Figures 7a and 7d). Second, the lack of spectral information on the GOES imager (compared to MODIS)
makes it difficult to discriminate clouds. Third, cloud detection algorithms, namely, CLAVR-x for GOES and
MOD35 for MODIS, are also different. These potential reasons may also explain the relatively large differences
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Figure 4. Mean number of Sun-glint-affected hourly observations within a day for each climatological month (2006-2011) from GEO-CAPE observation geometry for
solar angle 6, < 80°. Here Sun glint is defined as the “high-glint” threshold used as the NASA standard quality control flag in composing global ocean color

data products, namely, Ly, >0.005 st . Pixels associated with Lgn>0.005 st~ ! are considered as low quality and not used in global composites. The asymmetric

patterns across longitudes in May, June, and July are mainly due to changes in wind speeds, while some periodic circular patterns (e.g., in September) are due to
changes in Sun angle from the hourly measurements. Statistics for the predefined subregions are presented in Table 3.

FENG ET AL. GOES CLOUD STATISTICS FOR GEO-CAPE




@AG U Journal of Geophysical Research: Atmospheres 10.1002/2016JD025372

Table 3. Mean Number of Sun-Glint-Affected (Lgn > 0.005sr ) Hourly Observations Within a Day for Each Climatological Month Between 2006 and 1010, Based
on GEO-CAPE Viewing Geometry and GOES-Provided Winds®

E_Atlantic Amazon Caribbean E_N_America G_Lakes SW_N_America CA_Upwelling GoM WEFS
Jan 0 (0) 0 8(0.2) 0 (0) 0 (0) 0 (0) 0.3 (0) 0.1 (0.1) 0 (0) 0 (0)
Feb 0.8 (0.3) 8 (1.1) 0.3 (0.2) 0 (0) 0 (0) 0.9 (0.4) 0 (0) 0.3(0.2) 0 (0)
Mar 1.7 (0.8) 5(1.6) 1.3 (0.6) 0 (0) 0 (0) 1.7 (0.8) 0 (0) 1.1 (0.5) 0 (0)
Apr 1.6 (0.8) 3.3 (1.5) 24 (1.1) 0.2 (0.1) 0 (0) 2.1 (1) 0(0.1) 1.6 (0.8) 0 (0)
May 1.4 (0.1) 2(0.3) 2.7 (0.2) 1(0.1) 0.2 (0.2) 2.1(0.2) 0 (0) 1.7 (0.1) 0.3 (0.2)
Jun 0.9 (0.1) 0.4 (0.1) 2.3 (0.1) 1(0.2) 0.2 (0.1) 1.6 (0.1) 0 (0) 1.1 (0.1) 0.4 (0.1)
Jul 1.2 (0.1) 0.9 (0.1) 2.7 (0.2) 1(0.1) 0.1 (0.1) 2(0.1) 0 (0) 1.5(0.2) 0.2 (0.1)
Aug 1.7 (0.4) 3(0.6) 2.7 (0.5) 0.3 (0) 0 (0) 2.7 (0.4) 0 (0) 2.1 (0.4) 0 (0)
Sep 1.5 (0.5) 35(1.2) 1.6 (0.6) 0.1 (0.1) 0 (0) 2.1(0.7) 0 (0) 1.2 (0.4) 0 (0)
Oct 0.7 (0.4) 28(1.4) 0.3 (0.2) 0 (0) 0 (0) 14 (0.7) 0.4 (0.4) 0.4 (0.2) 0 (0)
Nov 0 (0) 1 4(0.1) 0 (0) 0 (0) 0 (0) 0.9 (0.1) 1.5 (1.1) 0.1 (0) 0 (0)
Dec 0 (0) 5(0.3) 0 (0) 0 (0) 0 (0) 0.5 (0.3) 0.2 (0.3) 0 (0) 0 (0)
Mean 1(0.3) 21 (0.7) 1.3(0.3) 0.3 (0.1) 0.1 (0) 1.5 (0.4) 0.2 (0.2) 0.9 (0.2) 0.1 (0)

#Numbers in the parentheses are standard deviations. Spatial distributions are presented in Figure 4.

(and also positive offsets) when cloud-free probability is low (<0.4 for June and <0.2 for December; Figure 8).
Figure 7 shows that these regions are mainly around the Intertropical Convergence Zone (ITCZ), where high
temperature causes abundant evaporation and convection, leading to cloudy weather for this region
throughout the year [Haug et al., 2001]. Consequently, cloud morphology may be different from other
regions, leading to different cloud detection results from GOES and Aqua observations. Nevertheless, the
overall results indicate that they are generally comparable between GOES and MODIS/Aqua for both spatial
and temporal patterns.

The differences due to resolution changes are also observed in MODIS data alone between 1km and 250 m
resolutions. As shown in Figure 9, for the entire GoM (18-31°N, 98-79°W), MODIS 1 km data show higher cloud
cover than 250 m data for both Terra and Aqua, with the difference in P often exceeding 20% in summer
months. This observation is consistent with those observed between GOES 4 km and MODIS 1 km data; i.e., finer
resolution leads to less cloud cover and higher cloud-free probability for a given location. Furthermore, the
differences in cloud cover between Terra (10:30 local overpass) and Aqua (13:30 local overpass) generally
concur with the GOES-based observations of diurnal differences in cloud cover.

5. Discussion
5.1. Uncertainties in GOES-Based and MODIS-Based Cloud Statistics

The GOES cloud mask is derived from a probabilistic approach which allows for the generation of an uncer-
tainty estimate. As shown in Heidinger et al. [2012], the uncertainties of the cloud detection over daytime
ocean are generally less than 5%. Independent comparisons against the cloud layer product derived from
the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the NASA Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) satellite confirm that the uncertainties for daytime ocean
are less than 10%. Uncertainties grow in regions of oceanic glint, but these would not impact the perfor-
mance of GEO-CAPE.

Does the cloud cover over the same location change significantly from year to year? If so, the cloud statistics
would be meaningless for planning the GEO-CAPE mission. This hypothesis can be rejected by the following
two reasons. First, global weather is controlled primarily by major atmospheric and oceanic circulation.
Although the strengths of these circulation patterns change between different years (especially during
El Nifio /La Nifa years), the overall patterns of the Earth’s weather are relatively stable during a certain period
[Barry and Chorley, 2009]. For example, the equatorial Pacific Ocean and Atlantic Ocean are located within the
ITCZ, where cloudy weather prevails throughout the year [Haug et al., 2001]. Likewise, the rapid seasonal
changes of the cloud coverage in the southwestern coast of North America are likely attributed to the
North American monsoon, where the evidently higher precipitation in boreal summer months is due to a
high pressure called the subtropical ridge [Adams and Comrie, 1997]. Similarly, the seasonality of cloud cover
in the other major oceans should also be associated with certain circulation patterns.
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Figure 5. Mean number of simultaneous cloud-free and glint-free hourly observations per day (N¢f). This is the same as in Figure 2 but excluding observations with
Lgn=0.005 st in Figure 4.

Second, asdemonstrated in the example shown in Figure 10, the overall patterns for N sare similar between the
six observed years from 2006 to 2011 in January, with relatively high values in the southwestern coast of North
America, the Caribbean Sea, and a large portion of the western Atlantic and lower values over the high-latitude
oceans and equatorial regions. The comparisons for other months also show similar agreements of Nt between
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Figure 6. GMT hour corresponding to maximal cloud-free and glint-free probabilities during a day for each climatological month (2006-2011) for solar angle
0o < 80°. Glint free is defined as Ly, < 0.005 sr™ . Statistics for the predefined subregions are presented in Table 4.

different years. The similarity of cloud cover between different years can also be revealed through the relatively
small standard derivations (STDs) in the climatological monthly N or P for the predefined regions (Tables 1
and 3), with STDs generally less than half (and often <10%) of the corresponding mean values. Moreover, the
Multivariate El Niflo-Southern Oscillation (ENSO) Index showed little variability in the 2000s when it was
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Table 4. GMT Hour Corresponding to Maximal Cloud-Free and Glint-Free Probability During a Day for Each
Climatological Month (2006-2010) for Solar Angle 6, < 80°

E_Atlantic Amazon Caribbean E_N_America G_Lakes SW_N_America CA_Upwelling GoM WFS

Jan 14 14 16 16 19 20 20 21 18
Feb 14 14 20 16 18 20 20 20 17
Mar 14 15 20 15 19 16 21 20 16
Apr 14 14 20 14 19 15 21 20 18
May 14 14 20 15 19 15 22 20 20
Jun 14 14 20 22 20 16 22 15 19
Jul 14 14 14 22 20 16 22 15 19
Aug 14 14 13 21 20 15 22 15 19
Sep 13 15 13 15 20 15 21 15 17
Oct 13 14 13 15 19 20 20 20 20
Nov 13 14 13 15 17 19 19 20 20
Dec 14 14 15 15 19 20 20 20 20

@For each region and month, the number shown in the table represents the mode oq the histogram of the optimal
hours (for cloud-free probability) from all pixels. Glint free is defined as Lgn < 0.005sr™ . Spatial distributions are pre-
sented in Figure 6.

compared with previous decades (http://www.esrl.noaa.gov/psd/enso/mei/), indicating that the observed
period of 2006-2011 would represent the mean cloud conditions during calm ENSO conditions. Thus, the
results presented in this study could be used to represent the mean cloud cover conditions in the Intra-
Americas Sea. In contrast, data statistics for strong El Nino years (e.g., 1998 and 2016) may not be used here
as the weather conditions during these years may be significantly different from those of normal years.

Similar to GOES cloud cover data product, the MODIS MOD35 cloud mask product has also been evaluated
and validated extensively through the use of measurements from both ground- and satellite-based instru-
ments. Agreement in cloud detection between the collection 5 MOD35 and active remotely sensed cloud

(¢) Dec MO

a8
7

o

Figure 7. Comparison between (a and d) GOES and (b and e) MODIS/Aqua cloud-free probability estimates and (c and f) the corresponding differences
(GOES — MODIS) for June and December 2006-2010. MODIS results are obtained from the standard 1 km MOD35 cloud mask products and binned to 1° resolu-
tion, with equatorial crossing time around 13:30 local time, while GOES results are from 4 km nadir resolution observations at 13:15 local time. The contours of GOES
original pixel sizes are annotated in Figures 7a and 7d.

FENG ET AL. GOES CLOUD STATISTICS FOR GEO-CAPE 1739


http://www.esrl.noaa.gov/psd/enso/mei/

@AG U Journal of Geophysical Research: Atmospheres 10.1002/2016JD025372

1 (a) June ' ' w 1 (b) December ' ' - 60
v =0.7023x + 0.1099 : ; y = 0.7824x + 0.0658 : : :
J : e : e
0.8 R?=0.5751 B N il ] 0.8/ R*=0.8354 SRR O B> A
n=1955 b e

n=1905 RN 50
Median ratio=1.03 : :

z z
2 2
(=} (o]
& &
g 0.6 R e e 5 40
& &
E = 30
204 S 0.4feeeeheenees A
@) @)
% § 20
> 0.2 > 0.2r "
0 . | i i DY Kt P i i :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
MODIS Cloud-free Probility MODIS Cloud-free Probility

Figure 8. Same as in Figure 7, but data are provided in scatterplots. The black solid lines are the 1:1 lines, and the red dashed lines are the linear fitting lines. Note that
these statistics were computed from ocean pixels only, with land pixels from Figure 7 removed.
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Figure 9. Comparison between MODIS percent cloud cover over the Gulf of Mexico (18°N-31°N, 98°W-79°W) using 1 km and QKM MOD?35 cloud mask products for
both MODIS/Aqua and MODIS/Terra, where the 1 km and QKM cloud coverage data were not independent. The annual mean cloud cover is also shown in every
panel (right hand of horizontal axis, with a tick name of “ALL").
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Figure 10. Comparison of N in January of 2006-2011 from GOES observations. While small differences are observed, the
overall distribution patterns are similar in different years. Same observation is obtained for all other months.

ground-based lidar and radar in the Central U.S. was about 85% [Ackerman et al., 2008]. It was also estab-
lished that about 90% of nonpolar disagreements between MOD35 and ground-based lidar were for
clouds with optical depths <0.4. More recent and comprehensive comparisons of collection 6 MOD35
to CALIOP satellite lidar indicate monthly global agreements (hit rates) in cloud detection of about 88%
but higher values in nonpolar regions (about 90%) (Richard Frey 2016, personal communication) [Holz
et al, 2008]. Note that these numbers represent the uncertainties from individual points instead of
systematic bias, therefore will not likely impact the analysis of spatial patterns and temporal changes used
in this study.

5.2. Implications for GEO-CAPE Measurement Strategy

The results presented here have significant implications for developing an optimal GEO-CAPE measure-
ment strategy to maximize its capacity to take high-frequency measurements while avoiding cloud cover
and Sun glint. Indeed, the GOES-East satellite data used in this study cover a large portion of the planned
FOV for GEO-CAPE, and the Sun-glint calculations are based on planned GEO-CAPE satellite location at 94°W.
The significant resources required to build and launch a GEO-CAPE ocean color sensor to measure every
region within the 67° sensor view angle at hourly frequency on a routine monitoring mode are not
available [Fishman et al., 2012]; thus, where, when, and how often to scan a certain region should be deter-
mined. Although, in practice, the local oceanography (e.g., bloom season) and science requirements also
need to be considered, the results here can be used to determine the best time windows to avoid cloud
and Sun glint for different regions. For example, the optimal time to observe the southern coast of North
America is 19-20 (GMT hour) from November to February and 15-16 (GMT hour) from March to April,
which ironically occur before and after the MODIS-Aqua overpass (approximately 1700 to 1830). Rules
for other regions could also be easily determined using the tables and figures shown in this study. The
cloud cover information throughout the day can be applied in GEO-CAPE scheduling studies to determine
the temporal frequency that any given region can be observed during any given month for any notional
instrument concept. Furthermore, these data can be applied to develop and test an autonomous schedul-
ing system that optimizes the spatial coverage and number of hourly observations. The cloud cover infor-
mation throughout the day can be applied in GEO-CAPE scheduling studies to determine the temporal
frequency that any given region can be observed during any given month for any notional instrument
concept. Preliminary scheduling studies [Frank et al., 2016] for two instrument concepts clearly demon-
strated how clouds reduce the number of viewable scenes, reduce competition for instrument time, and
thus allow slower instruments to become more favorable in temporal metrics. Furthermore, these or similar
data can be applied to develop and test an autonomous scheduling system that optimizes the spatial
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Figure 11. Number of hourly observations during a day (2006-2010) with Sun-glint reflectance (Lgn) >10">sr™ ', Under such Sun-glint influence, surface oil slicks

can always be observed due to surface wave damping [Sun and Hu, 2016].

coverage and number of hourly observations [Cappelaere et al., 2015]. In addition, low-Earth orbit missions
such as PACE or JPSS can utilize these results to optimize spatial resolution for more cloud-free observations
whenever the trade space allows.

Note that the GOES-derived cloud statistics are based on 4 km resolution measurements, and cloud cover has
been shown to be sensitive to spatial resolution. Although the average differences between 4 km and 1 km
and between 1 km and 250 m are not large (about 10%), in certain months or regions the difference between
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4km and 1km and between 1km
and 250m could reach 30% or
higher. For example, during summer
months over the GoM the 250m
MODIS data show 20% less cloud
cover than 1km MODIS data
(Figure 9). Although these differences
are unlikely to change the overall
spatial/temporal patterns of GOES-
based cloud statistics, they do sup-
port finer spatial resolutions in order
to minimize cloud cover effects. In this
regard, the 375 m nadir resolution of
GEO-CAPE is a reasonable choice to
increase cloud-free probability over
the standard 1 km ocean color obser-
vations, and this is in addition to
meeting the science requirements to
Figure 12. Mean number of cloud-free observations during a day based on ~ address small-scale oceanographic
MODIS observations between 2006 and 2011. Note that the maximum processes. The increased cloud-free
numberis <1.0 from the polar-orbiting sensor. The figure serves asareference  coverage is mostly near small cloud

to compare with those obtained from hourly geostationary observations by
GOES (Figure 1).

patches, where the pixels are con-
taminated by stray light and thus
deemed as being low quality [Feng
and Hu, 2016a]. However, with continuous progress in algorithm improvement some of these cloud-adjacent
pixels may be “recovered” to meet the science requirement [e.g., Feng and Hu, 2016al.

Although for ocean color measurements Sun glint is often avoided (e.g., SeaWiFS is tilted to avoid Sun glint), the
presence of Sun glint can facilitate observing certain ocean surface features such as internal waves [Jackson,
2007] and oil slicks [Adamo et al., 2009; Hu et al., 2009]. A recent study by Sun and Hu [2016] showed that when
Lgnis >1 07 sr™", even the thinnest surface oil films from natural seeps can always be detected by MODIS or
VIIRS. The number of hourly observations during a day (2006-2011) with Lgn > 10 °sr ' for GEO-CAPE
observing geometry (N;) are shown in Figure 11. This is also informative for GEO-CAPE measurement planning,
as one of the objectives of GEO-CAPE is to monitor oil spills [Fishman et al., 2012]. Generally, higher N, values can
be identified in the warm months than in cold months, especially in the tropical and subtropical oceans of the
Caribbean, GoM, and the equatorial regions. These results can be used to determine the best months to map
the nature oil slicks using future GEO-CAPE observations. For example, May to July appear to be the optimal
period for hourly observations in the GoM, as N, in these months is >4.

Finally, although it is intuitive that N from polar orbiters is always < 1.0 except for polar regions, it would be
interesting to have a visual inspection in reference against those from GOES observations. Figure 12 presents
such an example, where distributions of N from MODIS/Aqua measurements between 2006 and 2011 are
demonstrated. For most locations N is <0.5. In contrast, from GOES observations most locations showed
N> 2.0, suggesting a significant improvement in cloud-free measurements from geostationary platforms.

6. Conclusions

Using GOES hourly observations at 4 km nadir resolution from 2006 to 2011 and measurement geometry of
GEO-CAPE, this study provides the first statistical results of cloud cover and Sun glint over the Intra-Americas
Sea. The climatological numbers of cloud-free and glint-free hourly observations within a day (solar zenith
angle <80°) are estimated and presented in both graphical and tabular forms for each of the predefined sub-
regions. Significant spatial and seasonal variabilities in both cloud and Sun glint patterns are observed. The
comparison of cloud statistics derived from several years of MODIS 1 km and 250 m observations over the
GoM also shows improved cloud-free probability with finer resolution. Given the limited resources anticipated
for the GEO-CAPE mission, the findings here support a geostationary sensor with subkilometer resolution and
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may be used to help plan the optimal observation time window for a certain region. We hope to incorporate

these findings in the future implementation of the GEO-CAPE measurement plan.

Notations

GOES  Geostationary Operational Environmental Satellite system (1974 to present)
CZCS  Coastal Zone Color Scanner (1978-1986)

SeaWiFS  Sea-viewing Wide Field-of-view Sensor (1997-2010)
MERIS  Medium Resolution Imaging Spectrometer (2002-2012)
MODIS  Moderate Resolution Spectroradiometer (1999 on Terra and 2002 on Aqua)

GOCl  Geostationary Ocean Color Imager (2010 to present)

VIIRS  Visible Infrared Imaging Radiometer Suite (2011 to present)
GEO-CAPE  Geostationary Coastal and Air Pollution Events

PACE Plankton, Aerosol, Cloud, ocean Ecosystem

OLCl  Ocean and Land Colour Instrument

NASA  U.S. National Aeronautics and Space Administration

GIOVANNI  Geospatial Interactive Online Visualization And aNalysis Infrastructure
CFSR  Climate Forecast System Reanalysis
Chla  Chlorophyll a concentration (mg m~—)
nFLH  Normalized Florescence Line Height (mw ™ 2cm™2pm ™" sr™")
Lgn  Normalized Sun-glint reflectance (st
6, Solar zenith angle
FOV  Field of view
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N Number of cloud-free hourly observations per day
Nsg  Number of Sun-glint-affected hourly observations per day
Neg  Number of cloud-free and glint-free hourly observations per day
N¢  Number of hourly observations per day with Ly, > 10735~
P Integrated daily cloud-free probability
Tmax Time of a day (or GMT hour in specific) that has the maximal cloud-free and glint-free
probability
Cs Cloud fraction
DPVOs  Mean daily percentage of valid observations
GoM  Gulf of Mexico
WFS  West Florida Shelf
ITCZ  Intertropical Convergence Zone
STD  Standard derivation
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